Overexpressing cell surface beta 1.4-galactosyltransferase in PC12 cells increases neurite outgrowth on laminin.
نویسندگان
چکیده
Neurite outgrowth on cellular and extracellular matrices is mediated by a variety of cell surface receptors. Some of these receptors recognize peptide determinants, whereas others bind oligosaccharide ligands. Previous studies have suggested that cell surface beta 1.4-galactosyltransferase functions as one of these receptors during neurite outgrowth on basal lamina by binding to N-linked oligosaccharides in the E8 domain of laminin. However, these previous investigations have been limited to the use of galactosyltransferase inhibitory reagents to block neurite formation. Therefore, in this study, we investigated whether the level of surface galactosyltransferase directly affects the efficiency of neurite outgrowth, or rather, is incidental to neurite formation. Northern blot analysis and cell surface galactosyltransferase assays were used to select two stable PC12 transfectants that overexpress surface galactosyltransferase by approximately four-fold. Radiolabeled antibody binding to intact cells and indirect immunofluorescence confirmed the higher expression of surface galactosyltransferase on transfected cells, compared to controls. Both galactosyltransferase transfected cell lines exhibited markedly enhanced neurite initiation, neurite formation, and rates of neurite elongation by two- to three-fold. These studies demonstrate that the expression of laminin receptors can be rate-limiting during neurite outgrowth, and that the level of surface galactosyltransferase can modulate the frequency and rate of neurite formation from PC12 cells on laminin.
منابع مشابه
Laminin fragment E8 mediates PC12 cell neurite outgrowth by binding to cell surface beta 1,4 galactosyltransferase
A number of cell surface receptors bind to distinct laminin domains, thereby mediating laminin's diverse biological activities. Cell surface beta 1,4-galactosyltransferase (GalTase) functions as one of these laminin receptors, facilitating mesenchymal cell migration and PC12 cell neurite outgrowth on laminin. In this study, the GalTase binding site within laminin was identified as the E8 fragme...
متن کاملCell surface galactosyltransferase mediates the initiation of neurite outgrowth from PC12 cells on laminin
Neurite outgrowth from PC12 pheochromocytoma cells, as well as from peripheral and central nervous system neurons in vitro, is mediated by the extracellular matrix molecule, laminin. We have recently shown that mesenchymal cell spreading and migration on laminin is mediated, in part, by the cell surface enzyme, beta 1,4 galactosyltransferase (GalTase). GalTase is localized on lamellipodia of mi...
متن کاملLaminin Fragment E8 Mediates PC12 Cell Neurite Outgrowth by Binding to Cell Surface/ 1,4 Galactosyltransferase
A number of cell surface receptors bind to distinct laminin domains, thereby mediating laminin's diverse biological activities. Cell surface ~l,4-galactosyltransferase (GalTase) functions as one of these laminin receptors, facilitating mesenchymal cell migration and PC12 cell neurite outgrowth on laminin. In this study, the GalTase binding site within laminin was identified as the E8 fragment b...
متن کاملEffects of Different Concentrations of Morphine on Staurosporine-Induced Neurite Outgrowth in Pc12 Cells
Purpose: The present study was conducted to evaluate the effect of different concentrations of morphine on staurosporine-induced neurite outgrowth in PC12 cells. Materials and Methods: PC12 cells were cultured in RPMI1640 culture medium supplemented with 0.2% BSA. Cells were divided into three groups; Ι, ΙΙ and ΙΙΙ, culture in the presence of 50, 100 and 214 nM staurosporine respectively. In ea...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 108 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1995